Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Approaches to Qualitative Research in Mathematics Education - Examples of Methodology and Methods
  Großes Bild
 
Approaches to Qualitative Research in Mathematics Education - Examples of Methodology and Methods
von: Angelika Bikner-Ahsbahs, Christine Knipping, Norma C. Presmeg
Springer-Verlag, 2014
ISBN: 9789401791816
587 Seiten, Download: 12493 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
     References 11  
  Contents 14  
  Part I: Grounded Theory Methodology 17  
     Chapter 1: Grounded Theory Methods 18  
        1.1 The Development of “Grounded Theory” 18  
           1.1.1 Overview of Research Processes 19  
        1.2 Place of Literature Review in Grounded Theory 20  
        1.3 Data Analysis: Open Coding 21  
        1.4 Memoing 22  
           1.4.1 Writing Memos and Using Diagrams 22  
           1.4.2 Using Computer Programs 23  
        1.5 Intermediate Coding and the Use of a Coding Paradigm 24  
           1.5.1 Heuristic Concepts 25  
           1.5.2 Coding for Process 25  
        1.6 Delimiting the Study 27  
           1.6.1 Theoretical Sampling and Saturation 27  
           1.6.2 Core Category 28  
        1.7 Theoretical Integration 28  
           1.7.1 Sorting Memos 29  
           1.7.2 Validating the Theory 30  
        1.8 Interpretive Frameworks 30  
           1.8.1 Pragmatism 31  
           1.8.2 Corbin and Strauss Circa 2008: Pragmatism and Symbolic Interactionism 32  
           1.8.3 Constructivist Grounded Theory 33  
           1.8.4 Situational Analysis 33  
        1.9 End Comment 35  
        References 35  
     Chapter 2: To See the Wood for the Trees: The Development of Theory from Empirical Interview Data Using Grounded Theory 37  
        2.1 Background and Focus of the Study 38  
        2.2 Realization of the Study 39  
        2.3 Theoretical Sensitivity and Sensitizing Concepts 42  
        2.4 Interdependence of Data Collection, Analysis, and Development of Theory 42  
        2.5 Data Analysis 47  
           2.5.1 Open Coding 48  
           2.5.2 Axial Coding 49  
           2.5.3 Exemplary Illustration of Open and Axial Coding Using Memos and Diagrams 50  
           2.5.4 Selective Coding 58  
        2.6 Going Beyond Grounded Theory 59  
        2.7 Conclusion 60  
        References 60  
  Part II: Approaches to Reconstructing Argumentation 63  
     Chapter 3: Methods for Reconstructing Processes of Argumentation and Participation in Primary Mathematics Classroom Interaction 64  
        3.1 Introduction 65  
        3.2 The Concepts of Argumentation and Participation 65  
           3.2.1 The Example “Thirteen Pearls” 67  
              3.2.1.1 The Transcript 67  
              3.2.1.2 Analyses of the Scene 68  
                 The Analysis of Argumentation 68  
                 The Analysis of Participation 70  
           3.2.2 The Example of “Mister X” 74  
              3.2.2.1 The Transcript 74  
              3.2.2.2 The Analyses of the Scene 75  
                 The Analysis of Argumentation 75  
                 The Analysis of Participation 78  
           3.2.3 Comparison of the Results of the Analyses of the Two Scenes 78  
        3.3 Some Theoretical Remarks 81  
           3.3.1 Further Research on the “Production-Design” in Mathematics Classes 82  
           3.3.2 More Complexly Structured Argumentations 82  
         Appendix: Transcripts and Rules of Transcription 83  
           Thirteen Pearls 83  
            Mister X 84  
            Rules of Transcription 85  
        References 86  
     Chapter 4: Reconstructing Argumentation Structures: A Perspective on Proving Processes in Secondary Mathematics Classroom Interactions 88  
        4.1 Introduction 88  
        4.2 The Importance of Understanding Proving Practices in the Classroom 90  
        4.3 Approaches to Describing Arguments 92  
           4.3.1 The Inadequacy of Logical Analysis for Reconstructing Proving Processes in Classrooms 92  
           4.3.2 Toulmin’s Functional Model of Argument 93  
           4.3.3 Local and Global Arguments 95  
        4.4 A Method for Reconstructing Arguments in Classrooms 96  
           4.4.1 Reconstructing the Sequencing and Meaning of Classroom Talk 97  
              4.4.1.1 Layout of Episodes 97  
              4.4.1.2 Turn by Turn Analyses 98  
           4.4.2 Analyzing Arguments and Argumentation Structures 99  
              4.4.2.1 Functional Reconstruction of the Argumentation 99  
              4.4.2.2 Reconstructing the Argumentation Structure of Proving Processes in Class 102  
           4.4.3 Comparing Global Argumentation Structures 104  
              4.4.3.1 Source-Structure 105  
              4.4.3.2 Spiral-Structure 106  
              4.4.3.3 Comparing Source-and-Spiral Argumentation Structures 109  
        4.5 Conclusion 111  
        References 112  
  Part III: Ideal Type Construction 115  
     Chapter 5: Empirically Grounded Building of Ideal Types. A Methodical Principle of Constructing Theory in the Interpretative Research in Mathematics Education 116  
        5.1 Introduction 116  
        5.2 Theories and Their Significance 117  
        5.3 The Notion of Theory in Interpretative Mathematics Education Research 119  
        5.4 Theory-Developing Research 120  
        5.5 Looking Back: The Roots of the Ideal Type Concept 122  
        5.6 Ideal Type Construction: Method of Everyday Understanding 126  
        5.7 Empirically Based Ideal Type Construction: A New Beginning 131  
        5.8 Ideal Type Construction in Research of Mathematics Education 132  
           5.8.1 Ideal Type Construction by Idealizing of Prototypes 132  
           5.8.2 Ideal Type Construction: Principle of Factual Theory Construction 134  
           5.8.3 A Model of Polar Ideal-Type Construction 135  
           5.8.4 Construction of Epistemic Action Types 137  
           5.8.5 Construction of Production Types 138  
           5.8.6 Ideal Type Construction with Ideal Types 140  
        5.9 Summary and Conclusion 142  
        References 143  
     Chapter 6: How Ideal Type Construction Can Be Achieved: An Example 147  
        6.1 Introduction 147  
        6.2 Methodological and Theoretical Considerations 148  
        6.3 Example: Constructing Ideal Types of Epistemic Processes 150  
           6.3.1 Step 1: Re-constructing the Cases Illustrated by an Epistemic Process as a Case for Ideal Type Construction 150  
              6.3.1.1 Approaching the Empirical Case with Peirce’s Sign Concept 150  
              6.3.1.2 The Epistemic Actions of Gathering and Connecting Mathematical Meanings 152  
              6.3.1.3 The Epistemic Action of Structure-Seeing 155  
              6.3.1.4 Representing the Course of the Epistemic Process 156  
              6.3.1.5 A Pictograph Representing the Phase Structure 158  
           6.3.2 Step 2: Grouping the Cases 158  
           6.3.3 Step 3: Building Ideal Types 160  
           6.3.4 Step 4: Building Theoretical Knowledge 161  
        6.4 What Can Be Learnt from This Example? 162  
        Appendix: Transcription Key 163  
        References 163  
  Part IV: Semiotic Research 165  
     Chapter 7: The Question of Method in a Vygotskian Semiotic Approach 166  
        7.1 Introduction 167  
        7.2 Method as the Central Problem of Scientific Inquiry 168  
        7.3 A Vygotskian Semiotic Approach 170  
           7.3.1 Knowledge 171  
           7.3.2 Learning 173  
        7.4 The Methodology of Our Semiotic Approach 174  
        7.5 Multi-Semiotic Analysis: An Example Concerning Pattern Generalization 178  
           7.5.1 Words-Gesture Combinations in the Production of a Factual Generalization 179  
           7.5.2 Words, Gesture and Rhythm: Refining the Generalization 184  
        7.6 Concluding Remarks 187  
        References 189  
  Part V: A Theory on Abstraction and Its Methodology 192  
     Chapter 8: The Nested Epistemic Actions Model for Abstraction in Context: Theory as Methodological Tool and Methodological Tool as Theory 193  
        8.1 Theory 194  
        8.2 The AiC Methodology 197  
           8.2.1 Design for Abstraction 198  
           8.2.2 A Priori Analysis 198  
           8.2.3 Data Collection and Preliminary Analysis 200  
           8.2.4 Need 201  
           8.2.5 Analysis According to the RBC-Model 202  
           8.2.6 Consolidation 205  
           8.2.7 Who Is Constructing? 206  
        8.3 A Focus Group in a Classroom as an Example 206  
           8.3.1 Design for Abstraction 207  
           8.3.2 A Priori Analysis 209  
           8.3.3 Data Collection and Preliminary Analysis 211  
           8.3.4 Analysis According to the RBC-Model, Including Need and Consolidation 211  
              8.3.4.1 Episode 1: Constructing EP 211  
              8.3.4.2 Episode 2: Partially Constructing ECE and ESS 213  
              8.3.4.3 Episode 3: The differences’ Task (Task 2) 216  
           8.3.5 Additional Methodological Comments 218  
              8.3.5.1 Knowledge Construction and Social Interaction 218  
              8.3.5.2 Tools as Contextual Elements in Knowledge Construction 218  
              8.3.5.3 Revision of the Instructional Design on the Basis of RBC Analysis 219  
        8.4 The Relationship of Theory and Methodology in AiC 219  
        References 223  
  Part VI: Networking of Theories 226  
     Chapter 9: Advancing Research by Means of the Networking of Theories 227  
        9.1 Introduction 227  
           9.1.1 The Evolution of Networking 228  
           9.1.2 Why Networking? 228  
        9.2 Language for Networking 229  
           9.2.1 The Semiosphere 229  
           9.2.2 The Essence of Networking and Its Limits 229  
        9.3 Methodological Considerations 230  
           9.3.1 Networking Strategies: The Spectrum of Networking Theories 230  
           9.3.2 Cross-Methodologies for Networking 231  
        9.4 Different Cases of Networking 232  
        9.5 Methodological Reflections: Difficulties That Accompany the Networking 234  
        9.6 Benefits of Networking: Advancing Research by Means of the Networking of Theories 235  
        References 235  
     Chapter 10: A Cross-Methodology for the Networking of Theories: The General Epistemic Need (GEN) as a New Concept at the Boundary of Two Theories 239  
        10.1 Introduction 239  
           10.1.1 Abstraction in Context 240  
           10.1.2 The Theory of Interest-Dense Situations 241  
           10.1.3 General Description of the Cross-Methodology of Networking the Two Theories 242  
        10.2 An Illustrative Example: Investigating the General Epistemic Need 243  
           10.2.1 The Task and Its Setting 244  
           10.2.2 Beginning a Cross-Analysis 245  
           10.2.3 Separate Analysis from the AiC-View 247  
           10.2.4 A Re-Analysis from the IDS-View and Its Results 249  
        10.3 Methodological Reflections About the Networking Process 253  
         Transcription Key 254  
        References 255  
  Part VII: Multi-Level-Analysis 257  
     Chapter 11: Understanding Learning Across Lessons in Classroom Communities: A Multi-leveled Analytic Approach 258  
        11.1 A Conceptual Framework for Analyzing the Generation of Common Ground 259  
           11.1.1 Core Constructs 260  
           11.1.2 The Reproduction and Alteration of a Common Ground: An Illustrative Exchange 261  
           11.1.3 Analyzing Common Ground at Collective and Individual Levels 264  
              11.1.3.1 The Collective Level 264  
              11.1.3.2 The Individual Level 266  
                 Microgenesis 268  
                 Ontogenesis 270  
                 Sociogenesis 271  
                 The Interplay Between Micro-, Onto-, and Sociogenetic Developments in Collective Activities 273  
              11.1.3.3 A Final Note on Collective and Individual Activity 274  
        11.2 An Illustration of Empirical Techniques: The Learning Mathematics Through Representations Project 275  
           11.2.1 Empirical Techniques Used to Inform Design Choices for the LMR Lesson Sequence 275  
              11.2.1.1 Preliminaries 275  
              11.2.1.2 Empirical Techniques and Design Choices 277  
                 Interview Studies 277  
                 Tutorial Studies 282  
                 Classroom Studies 285  
                    Preliminary Classroom Studies 285  
                    LMR Classroom Studies: Preliminary Lessons and Their Iterative Refinement 286  
                    Support for Use of the Lesson Sequence with New Teachers 287  
                 Efficacy study 287  
                    Student Assessment Instrument 287  
                    Student Assessments and Growth 288  
           11.2.2 The Complete Lesson Series 288  
              11.2.2.1 Supports for a Common Ground of Talk and Action with Shifting Lesson Topics 290  
                 Ordering of Lesson Topic 291  
                 Definitions and Principles 291  
                 Cuisenaire™ Rods (C-Rods) 294  
                 Recurrent Lesson Structure 295  
           11.2.3 Empirical Techniques Used to Analyze the Reproduction and Alteration of a Common Ground of Talk and Action in a Classroom Community 296  
              11.2.3.1 Empirical Techniques: Data Collection 296  
                 Video Records (of Lessons) 297  
                 Assessment of Integers and Fractions Knowledge 297  
                 After Class Interviews 298  
                 Sociogram 298  
                 Teacher Interviews 298  
              11.2.3.2 Empirical Techniques: Data Reduction and Analytic Approach 299  
                 Collective Level: A Focus on Emergent Norms in the Classroom Community 301  
                    Sociomathematical Norm #1. Use Definitions to Support Your Ideas: Especially When Explaining Thinking or Justifying Reasoning 302  
                    Sociomathematical Norm #2. When Definitions Are Used, Connect Them to a Particular Problem Context and/or to Other Definitions 304  
                 Individual Level: A Focus on the Microgenesis, Ontogenesis, and Sociogenesis of Form-Function Relations 306  
                    Microgenesis: Empirical Techniques and the Unit Interval 307  
                    Ontogenesis: Empirical Techniques and the Unit Interval 308  
                       After Class Interviews: Ravena’s After Class Interview and Shifts in Thinking Through the Lesson 309  
                       Student Assessment Instrument to Document Longer-Term Ontogenetic Shifts: Pre-, Interim-, Post-, and Final Assessments 310  
                    Sociogenesis: Empirical Techniques and the Unit Interval 313  
                       Documenting Shifts in the Distributions of Form-Function Relations 314  
                       Explaining Shifts in the Distributions of Form-Function Relations 316  
        11.3 Final Thoughts and Next Steps 318  
        References 321  
  Part VIII: Mixed Methods 324  
     Chapter 12: The Combination of Qualitative and Quantitative Research Methods in Mathematics Education: A “Mixed Methods” Study on the Development of the Professional Knowledge of Teachers 325  
        12.1 Introduction 326  
        12.2 “Mixed Methods”: Challenging the Qualitative-­Quantitative Divide in Social and Educational Research 327  
        12.3 The Dispute About “Quan” and “Qual” and Mixed Methods in Research on Mathematics Education 329  
        12.4 Basic Methodological Concepts of Method Integration 333  
           12.4.1 Combination of Methods and Techniques During Data Collection and Analysis 333  
           12.4.2 Integration of Methodological Approaches Within one Research Design 334  
        12.5 Capabilities and Functions of Mixed Methods Designs 337  
           12.5.1 Strengths and Challenges of Quantitative Methods 337  
           12.5.2 Strengths and Challenges of Qualitative Methods 340  
           12.5.3 Types of Mixed Methods Designs and Their Function in the Research Process 342  
        12.6 An Example of a Mixed Methods Research Design in Mathematics Education 344  
           12.6.1 Research Purpose and Mixed Methods Design of the TEDS-Telekom Study 344  
           12.6.2 The Quantitative Sub-Study 346  
           12.6.3 The Qualitative Sub-Study 349  
           12.6.4 Triangulation in the Mixed Methods Design: Relating Quantitative and Qualitative Findings to Each Other 351  
        12.7 Different Functions of Mixed Methods Designs: An Overview 357  
        References 359  
  Part IX: Qualitative Content Analysis 366  
     Chapter 13: Qualitative Content Analysis: Theoretical Background and Procedures 367  
        13.1 Methodological Background of Qualitative Content Analysis 367  
        13.2 Development and Definition of Content Analysis 369  
        13.3 Basics of Qualitative Content Analysis 371  
           13.3.1 Embedding of the Material Within the Communicative Context 371  
           13.3.2 Systematic, Rule-Bound Procedure 371  
           13.3.3 Categories as the Focus of Analysis 372  
           13.3.4 Object Reference in Place of Formal Techniques 373  
           13.3.5 Pilot Testing of the System of Categories and the Content Analytical Rules 373  
           13.3.6 Theory-Guided Character of the Analysis 374  
           13.3.7 Integrating Quantitative Steps of Analysis 374  
           13.3.8 Quality Criteria 374  
        13.4 Basic Procedures or Techniques of Qualitative Content Analysis 375  
           13.4.1 Inductive Category Formation 376  
           13.4.2 Deductive Category Assignment (Structuring) 378  
        13.5 Final Appraisal of the Qualitative Content Analysis 380  
        References 381  
     Chapter 14: A Study on Professional Competence of Future Teacher Students as an Example of a Study Using Qualitative Content Analysis 383  
        14.1 Introduction 383  
        14.2 Theoretical Framework and Research Question of the Study 384  
        14.3 Why Was Qualitative Content Analysis Chosen? 385  
        14.4 How Was Qualitative Content Analysis Used in This Study? 389  
        14.5 Summary 399  
        References 399  
  Part X: Triangulation and Cultural Studies 402  
     Chapter 15: The Contemporary Importance of Triangulation in a Post-Positivist World: Examples from the Learner’s Perspective Study 403  
        15.1 Introduction 404  
        15.2 Triangulation 406  
        15.3 Research as the Mobilization of Bias 409  
           15.3.1 Mathematics Teaching 409  
           15.3.2 Chinese Learners’ Paradox 410  
           15.3.3 National Pedagogies 410  
           15.3.4 Research Design Characteristics 410  
        15.4 Characteristic Features of the Hong Kong LPS Research Implementation 411  
        15.5 Triangulation and Acts of Cross-Cultural Comparison 413  
           15.5.1 Lesson Patterns or Lesson Structure 414  
           15.5.2 The Hong Kong Investigation of Lesson Structure 416  
           15.5.3 Contrasting the Enactment of “Lesson Events” Across Different Cultural Systems 418  
              15.5.3.1 The Learning Task: One Example of a Lesson Event 420  
        15.6 Conclusion 422  
        References 423  
  Part XI: Design Research as a Research Methodology 426  
     Chapter 16: An Introduction to Design-Based Research with an Example From Statistics Education 427  
        16.1 Theory of Design-Based Research 427  
           16.1.1 Purpose of the Chapter 427  
           16.1.2 Characterizing Design-Based Research 428  
              16.1.2.1 Integration of Design and Research 428  
              16.1.2.2 Predictive and Advisory Nature of DBR 428  
              16.1.2.3 The Role of Hypotheses and the Engineering Nature of DBR 429  
              16.1.2.4 Open and Interventionist Nature of DBR 430  
              16.1.2.5 Comparison of DBR with Randomized Controlled Trials (RCT) 431  
              16.1.2.6 Comparison of DBR with Action Research 433  
              16.1.2.7 Names and History of DBR 434  
              16.1.2.8 Theory Development in Design-Based Research 435  
              16.1.2.9 Summary of Key Characteristics of Design-Based Research 435  
           16.1.3 Hypothetical Learning Trajectory (HLT) 436  
              16.1.3.1 HLT in the Design Phase 437  
              16.1.3.2 HLT in Teaching Experiment 437  
              16.1.3.3 HLT in the Retrospective Analysis 438  
           16.1.4 Phases in DBR 439  
              16.1.4.1 Phase 1: Preparation and Design 439  
              16.1.4.2 Phase 2: Teaching Experiment 439  
              16.1.4.3 Retrospective Analysis 440  
           16.1.5 Validity and Reliability 441  
              16.1.5.1 Internal Validity 442  
              16.1.5.2 External Validity 442  
              16.1.5.3 Internal Reliability 443  
              16.1.5.4 External Reliability 443  
        16.2 Example of Design-Based Research 443  
           16.2.1 Relevance and Aim 444  
           16.2.2 Research Question 444  
           16.2.3 Orienting Framework: Diagrammatic Reasoning 445  
           16.2.4 Domain-Specific Framework for Action: Realistic Mathematics Education (RME) 446  
           16.2.5 Methods 447  
           16.2.6 HLT and Retrospective Analysis 450  
              16.2.6.1 Analysis of the First Phase of Growing a Sample 452  
              16.2.6.2 Analysis of the Second Phase of Growing a Sample 454  
              16.2.6.3 Analysis of the Third Phase of Growing a Sample 456  
           16.2.7 Reflection on the Example 458  
           16.2.8 Final Remarks 459  
        Appendix: Structure of a DBR Project with Illustrations 459  
        References 461  
     Chapter 17: Perspectives on Design Research: The Case of Didactical Engineering 465  
        17.1 Introduction 465  
        17.2 Didactical Engineering: An Historical Review 466  
        17.3 Didactical Engineering as a Research Methodology 469  
           17.3.1 Preliminary Analyses 470  
           17.3.2 Conception and a Priori Analysis 471  
           17.3.3 Realization, Observation and Data Collection 472  
           17.3.4 A Posteriori Analysis and Validation 472  
           17.3.5 The Nature of the Results 473  
           17.3.6 Didactical Engineering and Design-Based Research 474  
        17.4 Two Particular Examples 475  
           17.4.1 A Paradigmatic Example: The Extension of the Field of Numbers by G. and N. Brousseau 475  
              17.4.1.1 Preliminary Analyses 476  
              17.4.1.2 Conception and Analysis a Priori 476  
              17.4.1.3 Realization, Data Collection, a Posteriori Analysis, Validation and Further Outcomes 478  
           17.4.2 An Example of Didactical Engineering Combining the Theory of Didactical Situations with Semiotic Perspectives 480  
              17.4.2.1 Preliminary Analyses 480  
              17.4.2.2 Conception and Analysis a Priori 481  
              17.4.2.3 Data Collection, a Posteriori Analysis and Validation 483  
        17.5 Some Recent Developments of Didactical Engineering 488  
           17.5.1 Didactical Engineering and the Anthropological Theory of Didactics 488  
           17.5.2 Research and Development: Didactical Engineering of Second Generation 490  
        17.6 Conclusion 491  
        References 492  
     Chapter 18: Educational Design Research to Support System-Wide Instructional Improvement 495  
        18.1 The United States Context 497  
        18.2 An Orienting Vision of High-Quality Mathematics Instruction 498  
        18.3 Design Studies to Investigate and Support System-Wide Improvement in Mathematics Instruction 499  
        18.4 Developing Initial Conjectures 500  
        18.5 Recruiting Collaborating Educational Systems 502  
        18.6 Using an Interpretive Framework to Assess Designed and Implemented Improvement Strategies 503  
        18.7 New Positions 504  
        18.8 Learning Events 505  
           18.8.1 Intentional Learning Events 505  
           18.8.2 Incidental Learning Events 506  
        18.9 New Organizational Routines 507  
        18.10 New Tools 507  
        18.11 Summary 509  
        18.12 Conducting Design, Analysis and Feedback Cycles 509  
           18.12.1 Documenting Current Instructional Improvement Strategies 510  
           18.12.2 Documenting How Instructional Improvement Strategies Are Implemented 513  
           18.12.3 Sharing Findings and Recommendations with System Leaders 514  
           18.12.4 Assessing the Influence of Recommendations on Collaborating System’s Instructional Improvement Strategies 517  
        18.13 Testing and Revising Conjectures that Comprise a Theory of Action for System-Wide Instructional Improvement 519  
        18.14 Findings About the Districts’ Instructional Improvement Strategies 519  
        18.15 Research Literature 519  
        18.16 Retrospective Analyses 520  
        18.17 MIST’s Current Theory of Action for Instructional Improvement in Middle-Grades Mathematics 520  
        18.18 Conclusion 522  
        References 523  
  Part XII: Final Considerations 529  
     Chapter 19: Looking Back 530  
        References 533  
  Bibliography 534  
  Author Index 573  
  Subject Index 580  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Computer
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Technik / Wissen
Wirtschaft

© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz